Maternal and offspring dietary intake in association with leukemia risk among children

Eleni Petridou. M.D. Professor of Preventive Medicine and Epidemiology
In collaboration with Th. Sergentanis & N. Giagos

Dept of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
Presentation axes and key points

Content

1. **Maternal dietary intake** during or just before pregnancy & **Paternal dietary intake**

2. **Index child nutrition**, including breastfeeding, in association with **leukemia**

Mode:

- Sharing experiences with **un/published NARECHEM data**, and methodological concerns
- Attempting **critical reappraisal of published literature**

Dept of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
Tracing the origins of childhood nutrition

“growing creatures have most innate heat, and it is for this reason that they need most food, deprived of which their body pines away” Hippocrates (Aphorisms, I. XIV)
Icie Macy (USA) & Elsie Widdowson (UK): pioneers

Played major roles in shaping our understanding on the complex associations of food with child growth

- ‘health care and nutritional influences may affect or change the normal course of health, growth and development of children—the world’s most precious asset”

- “One of the great mysteries of life is the power of growth, that harmonious development of complete organs and tissues from simple protoplasmic cells, with the ultimate formation of a complex organism with its orderly adjustment of structure and function”

Dept of Hygiene, Epidemiology & Medical Statistics, National and Kapodistrian University of Athens, Greece
A natural experiment on the effects of extreme dietary restrictions: the Dutch Famine of 1944 (Hunger Winter) & the later infant health/survival

“nutritional deprivation severe enough to result in maternal weight loss or reduced weight gain results in a corresponding reduction in offspring length and ponderal index (and hence also birth weight), that is directly related to infant survival.” Stein et al. 1995

“prenatal exposure to famine is linked to decreased glucose tolerance in adults” Ravelli et al, 1998

“Acute famine exposure in utero appears to have no adverse consequences for a woman's fertility. [...] the excess of perinatal deaths occurred among offspring of famine exposed women is unexplained.” Lumey et al. 1997

“Women whose mothers were malnourished during the early stages of pregnancy stand a greater chance of becoming overweight in middle age’ Malnourished Mothers Breed Obese Daughters ,The Independent, 1999
Diet during pregnancy or just before
Maternal dietary intake

Maternal Diet and Acute Lymphoblastic Leukemia in Young Children

Eleni Petridou,¹ ² Evangelos Ntouvelis,¹ Nick Dessypris,¹ Agapios Terzidis,¹ Dimitrios Trichopoulos,¹ ² and the Childhood Hematology-Oncology Group

¹Department of Hygiene and Epidemiology, Athens University Medical School, Athens, Greece and ²Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts

Dept of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
Nationwide Coverage: All 6 case reporting sites

Nationwide Registry for Childhood Hematologic Malignancies (NARECHEM)

- Athens Metropolitan Area (1,2,3)
- Thesaloniki (4,5)
- Heraklion, Crete (6)

NARECHEM:
✓ 6 Depts, since 1996
✓ Newly diagnosed cases
✓ Hospital controls
The study:

- 131 children 1-4 years with ALL
- 1:1 gender and age-matched controls
- Food frequency questionnaire addressing maternal diet during the index pregnancy
- Multivariate adjustment for confounders

Dept of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
Maternal dietary intake - food groups:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Increment</th>
<th>OR (95% CI)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals and starchy roots</td>
<td>One quintile more</td>
<td>1.23 (0.94-1.60)</td>
<td>0.13</td>
</tr>
<tr>
<td>Sugars and syrups</td>
<td>One quintile more</td>
<td>1.32 (1.05-1.67)</td>
<td>0.02</td>
</tr>
<tr>
<td>Pulses and nuts</td>
<td>One quintile more</td>
<td>0.96 (0.77-1.20)</td>
<td>0.73</td>
</tr>
<tr>
<td>Vegetables</td>
<td>One quintile more</td>
<td>0.76 (0.60-0.95)</td>
<td>0.01</td>
</tr>
<tr>
<td>Fruits</td>
<td>One quintile more</td>
<td>0.72 (0.57-0.91)</td>
<td>0.007</td>
</tr>
<tr>
<td>Meat and meat products</td>
<td>One quintile more</td>
<td>1.25 (1.00-1.57)</td>
<td>0.05</td>
</tr>
<tr>
<td>Fish and seafood</td>
<td>One quintile more</td>
<td>0.72 (0.59-0.89)</td>
<td>0.003</td>
</tr>
<tr>
<td>Milk and dairy products</td>
<td>One quintile more</td>
<td>0.82 (0.66-1.02)</td>
<td>0.08</td>
</tr>
<tr>
<td>Butter/margarine</td>
<td>One tertile more</td>
<td>1.41 (0.97-2.06)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

NOTE: Controlling for matching variables, maternal age at birth, birth weight, maternal smoking during pregnancy, maternal years of schooling, maternal occupation, and maternal daily energy intake during pregnancy but not mutually among food groups.
Integrating our study in the wider context...

Kwan et al, 2009; 282 children with ALL- 359 controls

Maternal dietary intake -12 months prior to pregnancy

- Significant **protective associations** (ORs 0.55- 0.81) with ALL for increased consumption of:
 - Legumes
 - Protein sources (sources of glutathione)
- Vegetables
- Fruit (borderline significance)

- **Non significant associations**: cured meat, grain and dairy products

Dept of Hygiene, Epidemiology and Medical Statistics,
National and Kapodistrian University of Athens,
Greece
Specifically, individual foods inversely related to ALL:
- Carrots
- Cantaloupe
- Oranges
- Green beans
- Other beans

Beef: a controversial entity

(Kwan et al, 2009, same study)
Meat-related controversies

Non significant association between:

- consumption of 5 meat groups during pregnancy and ALL - ORs tended to increase for cured meat consumption among those not taking vitamin supplements

(Sarasua & Savitz, 1994)

- usual maternal consumption of different meat/meat products and childhood leukemia

(Peters et al, 1994)
A need for quantitative synthesis is evident
Maternal dietary intake - Tea

Maternal consumption of coffee/tea during the last 6 months of pregnancy
337 children with ALL- 697 controls (Aus-ALL study)

- **Tea:** overall, inverse non significant associations with both Pre-B and T-cell ALL
- Associations modified after **control for gene translocations**

- **MA:** overall protective effect of tea consumption, although there was some evidence of heterogeneity

 (Milne et al, 2011)
Maternal dietary intake – MA coffee

Consumption of \geq 3 cups/day: OR 1.67 (95% CI 1.20, 2.32)

ORs varied by smoking habits of mothers suggesting that smoking may modify the association between coffee consumption and ALL

(Milne et al, Am J Epidemiol, 2011)
Maternal dietary intake – micronutrients

• Micronutrients possibly inversely associated to ALL:
 - provitamin A carotenoids, alpha-carotene
 - vitamins A and D (Shu et al, 1988)
 - total and reduced glutathione (found in protein-containing foods)

• Possibly Not associated:
 - Flavonoids (Genistein, Quercetin)
 - Folate
 - Vitamins A & D

(Kwan et al, 2009)
Natural DNAt2 Inhibitors

Dietary DNAt2 inhibitors: flavonoids (quercetin, genistein), caffeine, and catechins

positively associated especially with infant AML (MLL+)

- Ross et al, 1996, Spector, CEBP, 2005
Folate and ALL: the hypothesis generating study

Thompson et al, 2001
Case control study of 83 children with ALL - 166 controls

→ **Folate** supplementation with or without iron during pregnancy was **protective** for childhood ALL
 OR=0.40 (0.21–0.73)

→ **Iron alone** was not significantly protective
Maternal dietary intake and ALL – folate

Milne et al, IJC, 2010
--Excluding the hypothesis-generating study. Why?

The ESCALE study: discrepancies and need for further, ongoing synthesis CLIC
Folate-related gene polymorphisms

- ESCALE data: Folate-related genetic polymorphisms may represent risk factors for CL (MTHFR C677T, MTRR A66G and C524T)
- Yin et al, MA PBC, 2012: a protective effect of the 677T allele
Inversely associated food groups/foods

- Vegetables
- Fruit - Oranges, carrots, cantaloupe
- Legumes
- Fish and seafood
- Tea

- Protein Sources - beans, beef
- Fiber from fruit/vegetables

Positively associated food groups/foods

- Sugar and Syrups
- Coffee (>3 cups/day)
- Total energy intake

- Meat products
- Fiber Cereals

Equivocal results

Inversely associated micronutrients

- Provitamin A Carotenoids
- Alpha-carotene
- Total/reduced glutathione
- Vitamins A & D (cod liver oil)
- Folate (?)
Metabolic Risk Can Be Conferred via the Paternal Lineage

Adverse offspring outcomes associated with the father’s diet, indicating nongenetic inheritance of paternal experience

Determining underlying mechanisms may require reconsideration of our understanding of the heritability of epigenetic states
Paternal diet and offspring metabolic outcome

(A) Male mice were fed a reduced-protein (and bred with female with normal diet) had offsprings with increased hepatic expression of lipid and cholesterol synthesis genes

(B) male mice with a history of intrauterine exposure to maternal undernutrition could influence metabolism in their offspring

A+B \rightarrow dietary or metabolic history of males affects metabolism in offspring, even in cases of normal diet at breeding.
Paternal diet and off-spring

Mechanism
- mediated by sperm, potentially via epigenetic marks in germ cells, but the changes must survive the important reprogramming events (methylation) that occur immediately postfertilization

- can also be mediated posttranscriptionally via the action of microRNAs (alteration of chromatin modulation)

! The described models are examples of paternal germline effects rather than transgenerational effects

→ true transgenerational effect would be manifest in offspring from sperm never exposed to dietary modification
Paternal diet and risk for leukemia in the offspring

Peters JM et al. Processed meats and risk of childhood leukemia (California, USA). Cancer Causes Control. 1994

Fathers' intake of hot dogs risk of leukemia among children 0-10 years: OR = 11.0, CI = 1.2-98.7, P = 0.01

BUT small numbers of observations in the subgroups (only about 2% of the controls were reported to eat hot dogs/other day
Short and long term breastfeeding: ALL
Kwan et al, 2004 MA (14 studies)
Breastfeeding - AML
Kwan et al, 2004 meta-analysis
Breastfeeding: any/exclusive breastfed vs. never breastfed

Martin et al, IJC 2005 meta-analysis:

- Significant **protective effect** of breastfeeding for *overall leukemia* (OR=0.87) and *ALL* (OR=0.91) but not for ANLL
- Significant **protection** for *Hodgkin’s disease* (HD)
- No association with Non-Hodgkin Lymphoma (NHL)
Breastfeeding: a multivalent factor

Early development of the immune system [vs] artificially fed infants

- **Protection from ALL**: Early exposure to infectious agents transferred from the mother’s milk → immune response via B-cell and appropriate modulation of the immune system
 -(expansion, suppression, elimination of certain T-cell subsets)
 The Greaves’s hypothesis

- **Protection from AML**: implies a separate immunological mechanism that is operating via myeloid precursors, along with the mechanism suggested by Greaves
Childhood diet
The NARECHEM study

Dept of Hygiene, Epidemiology and Medical Statistics,
National and Kapodistrian University of Athens,
Greece
Childhood diet and food groups:

- 139 children with ALL, aged 5-14 years
- 1:1 gender and age-matched controls
- Food frequency questionnaire addressing diet (157 items)
- Food groups, macronutrients, micronutrients
- Multivariate adjustment for confounding factors
- Adherence to Mediterranean diet
Mediterranean diet score

Range: 0-55, Eleven distinct food groups
- Olive oil
- Alcohol (inv)
- Non-refined cereals
- Potatoes
- Fruits
- Vegetables
- Legumes
- Fish
- Red meat products (inv)
- Poultry (inv)
- Full-fat dairy (inv)

Dept of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
Adherence to Mediterranean diet

OR for Med-diet score: 1.06, p=0.16

Assessment of impact of childhood diet: a core methodological consideration

Is the exposure time frame adequate?
Food groups and ALL: NARECHEM data

Similar results for total childhood leukemia

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95%CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereals and starchy roots</td>
<td>1.17 (0.92-1.49)</td>
<td>0.20</td>
</tr>
<tr>
<td>Sugars and syrups</td>
<td>1.10 (0.88-1.38)</td>
<td>0.38</td>
</tr>
<tr>
<td>Pulses, nuts and seeds</td>
<td>0.94 (0.76-1.15)</td>
<td>0.55</td>
</tr>
<tr>
<td>Vegetables</td>
<td>1.09 (0.90-1.33)</td>
<td>0.37</td>
</tr>
<tr>
<td>Fruits</td>
<td>1.05 (0.88-1.25)</td>
<td>0.60</td>
</tr>
<tr>
<td>Meats and meat products</td>
<td>0.96 (0.78-1.18)</td>
<td>0.69</td>
</tr>
<tr>
<td>Fish and shellfish</td>
<td>1.00 (0.82-1.21)</td>
<td>0.98</td>
</tr>
<tr>
<td>Milk and milk products</td>
<td>0.94 (0.77-1.14)</td>
<td>0.53</td>
</tr>
<tr>
<td>Added lipids</td>
<td>1.31 (1.04-1.64)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Unpublished NARECHEM data (not to be quoted)
Micronutrients and ALL *Unpublished NARECHEM data not to be quoted*

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR (95%CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thiamin</td>
<td>0.62 (0.39-0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Nicotinic Acid</td>
<td>0.38 (0.17-0.85)</td>
<td>0.02</td>
</tr>
<tr>
<td>Riboflavin</td>
<td>0.68 (0.44-1.05)</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Non significant associations with:
- fiber
- retinol
- carotene
- vitamin C, vitamin B6
- sodium, potassium, calcium, magnesium, phosphorus
- iron

Dept of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Greece
Micronutrients and carcinogenesis
De Vogel, J Nutr, 2008g

Riboflavin & vitamin B6 are involved in the folate mediated 1-carbon metabolism, may therefore modulate the bioavailability of methyl groups

Low riboflavin status is associated with increased homocysteine concentration, possibly resulting in lower availability of methyl groups
Convergence with other studies

Liu et al, 2009: Dietary intake before diagnosis; 145 leukemia cases (2-20 years old); 370 controls

Consumption of food	2–5 years old		2–20 years old			
	Cases (n = 50)	Controls (n = 118)	OR (95% CI)	Cases (n = 145)	Controls (n = 370)	OR (95% CI)
Cured meat/fish						
Rare or occasional	34	90	1.00	94	282	1.00
Frequent	16	28	1.52 (0.75–3.09)	51	88	1.74 (1.15–2.64)
Pickled vegetables						
Rare or occasional	44	103	1.00	124	322	1.00
Frequent	6	15	1.07 (0.41–2.79)	20	48	1.10 (0.62–1.93)
Bean-curd food						
Rare or occasional	17	21	1.00	34	53	1.00
Frequent	33	97	0.47 (0.22–0.99)	111	317	0.55 (0.34–0.89)
Vegetables						
Rare or occasional	27	39	1.00	57	97	1.00
Frequent	23	79	0.44 (0.22–0.85)	88	273	0.55 (0.37–0.83)
Fruits						
Rare or occasional	29	46	1.00	75	178	1.00
Frequent	21	72	0.53 (0.28–1.01)	70	192	0.86 (0.58–1.26)
Tea						
No	34	80	1.00	100	237	1.00
Yes	16	38	0.98 (0.49–1.95)	45	133	0.80 (0.53–1.22)

*Odds ratios and 95% confidence intervals derived from logistic regression adjusted for age and sex

*p < 0.05; **p < 0.01
Convergence with other studies

Kwan et al. 2004:

- 328 children with leukemia >2 years of age – 415 controls
- Childhood diet in the first 2 years of life
- **Oranges/bananas** (>4-6 days/week): lower CL risk, OR = 0.49 (95%CI: 0.26-0.94)
- **Orange juice** (>1-3 days/week): OR = 0.54 (95%CI: 0.31-0.94)
- Non significant positive associations for hot-dogs/lunch meat and beef/hamburger
Convergence with other studies

- Precursors or inhibitors of N-nitroso compounds (NOC): 14 cases - 3 controls
 Significant positive association of >12 hot-dogs/month with CL
 (Peters et al, CCC, 1994)

- Positive non-significant associations of different meats/meat products (especially combination of no vitamins and meat) with ALL
 (Sarasua & Savitz, CCC, 1994)
Double controversy???
The future
Perspectives (qualitative aspects of diet)

• A systematic review – meta-analysis aiming to clarify comparability of studies in different time windows and synthesize available evidence (*in preparation, Athens, GR*)

• Large consortia studies needed to maximize statistical power in the detection of subtle effects
 -- > local particularities regarding nutritional habits?

• Gene-environment interactions
 (the paradigm of folate and MTHFR/MTRR polymorphisms)
Impact of quantitative vs. qualitative of dietary intake aspects at population level?
Is birth weight a summarizing proxy or a confounding factor?

Birth weight and childhood leukemia: A meta-analysis and review of the current evidence

Robert W. Caughey and Karin B. Michels

Is birth weight associated with childhood lymphoma?
A meta-analysis

C. Papadopoulou, C.N. Antonopoulos, T.N. Sergentanis, P. Panagopoulou, M. Belechri and E.T. Petridou
Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, Athens, Greece
Intrauterine exposure to pregnancy diabetes (GDM) & risk of obesity/diabetes II in the adolescent offspring

Hyperglycemic intrauterine environment: predisposes to earlier onset of diabetes II in the offspring; ~1.7 years earlier among those exposed to diabetes in utero than when maternal diabetes was diagnosed later.

Intrauterine exposure to maternal diabetes and obesity: associated with diabetes II in youth (50%).

Inconsistent evidence: an association between GDM and offspring overweight/obesity (methodological limitations in 12 eligible studies).

Preconception paternal diabetes: not associated with age at diagnosis.
Intrauterine exposure to maternal diabetes & risk of obesity-diabetes II in the adolescent offspring
Dietary intake components in the CLIC studies panorama

Table 3. CLIC Pooled Analyses, as of December 2011

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal growth</td>
<td>Risk of ALL</td>
</tr>
<tr>
<td>Maternal vitamin and folate intake during pregnancy, alcohol consumption, and MTHFR variants</td>
<td>Risk of ALL, AML</td>
</tr>
<tr>
<td>Tobacco smoking, and NQ01 variants</td>
<td>Risk of ALL</td>
</tr>
<tr>
<td>Markers of early infections and allergies</td>
<td>Risk of ALL</td>
</tr>
<tr>
<td>Indoor sources of benzene and hydrocarbons, xenobiotic transport and metabolic genes</td>
<td>Risk of AML</td>
</tr>
<tr>
<td>Assisted reproductive technologies; time to pregnancy</td>
<td>Risk of ALL</td>
</tr>
<tr>
<td>Exposure to pesticides at home and work, xenobiotic transport and metabolic genes</td>
<td>Risk of ALL, AML</td>
</tr>
<tr>
<td>Exposure to paints at home and work, xenobiotic transport and metabolic genes</td>
<td>Risk of ALL, AML</td>
</tr>
<tr>
<td>Geographic distribution of AML, APL and cytogenetic subtypes</td>
<td>Risk of AML</td>
</tr>
<tr>
<td>Socio-demographic and clinical characteristics</td>
<td>Survival of ALL, AML</td>
</tr>
<tr>
<td>Maternal consumption of coffee and tea</td>
<td>Risk of ALL, AML</td>
</tr>
</tbody>
</table>

Abbreviations: ALL = acute lymphocytic leukemia; AML = acute myeloid leukemia; APL = acute promyelocytic leukemia