PON1 polymorphisms and Wilms Tumor

Gisele Moledo de Vasconcelos, PhD
Gonçalves BAA, Azevedo RM, Pombo-de-Oliveira MS, de Camargo B and the
Brazilian Embryonic Tumor Group

Pediatric Hematology-Oncology Program Instituto Nacional de Câncer, Rio de Janeiro, Brazil

Wilms tumor

Fetal kidney 18 weeks

Wilms tumor

Mature kidney

EXPOSITION TO ENVIRONMENTAL RISK FACTORS

Pesticides and Wilms Tumor

 Previous studies have shown an association of pesticides exposures and Wilms Tumor risk.

British Journal of Cancer (1998) 77(5), 825–829 © 1998 Cancer Research Campaign

Childhood cancer and paternal employment in agriculture: the role of pesticides

NT Fear¹, E Roman², G Reeves¹ and B Pannett³

'Cancer Epidemiology Unit, Imperial Cancer Research Fund, Gibson Building, Radcliffe Infirmary, Woodstock Road, Oxford, Ox2 6HE; 'Leukaemia Research Fund, Centre for Clinical Epidemiology, University of Leeds, Leeds, LS2 9JT; 'Medical Research Council Environmental Epidemiology Unit, University of Southamoton, South

Available online at www.sciencedirect.com

Int. J. Hyg. Environ.-Health 209 (2006) 57-64

www.elsevier.de/iiheh

Wilms' tumor and exposures to residential and occupational hazardous chemicals

James Tsai*, Wendy E. Kaye, Frank J. Bove

Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), 1600 Clifton Road, Mailstop-E86, Atlanta, GA 30333, USA

Research | Children's Health

Household Pesticides and the Risk of Wilms Tumor

Maureen A. Cooney, ¹ Julie L. Daniels, ¹ Julie A. Ross, ² Norman E. Breslow, ³ Brad H. Pollock, ⁴ and Andrew F. Olshan ¹

¹Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina, USA; ²Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; ³Department of Biostatistics, University of Washington, USA; and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA

Pesticides and Wilms Tumor

American Journal of Epidemiology

Copyright © 1995 by The Johns Hopkins University School of Hyglene and Public Health

All rights reserved

Vol. 141, 1 Printed in U.S.A.

Parental Exposures to Pesticides and Risk of Wilms' Tumor in Brazil

Colin R. Sharpe, ¹ Eduardo L. Franco, ¹ Beatriz de Camargo, ² L. Fernando Lopes, ² J. Henrique Barreto, ³ Rosanne R. Johnsson, ³ and Marcos A. Mauad³

Paraoxonase 1 (PON1)

- Hydrolyses active metabolites of organophosphorus pesticides.
- Levels of PON1 change according to age.

And also due to polymorphims.

Polymorphisms in the gene *PON1*

PON1 Q192R – change activityPONL55M – change enzyme levels

Children susceptibility to Wilms Tumor can be modified by PON1 genotypes:

their own genotype

and during pregnancy, in case of exposition, maternal genotype

Aims

• Identify the distribution of *PON1* (Q192R and L55M) polymorphisms and its relationship with Wilms tumor & embryonal neuroectodermal origin tumors development in Brazilian children.

• Identify the frequencies of *PON1* polymorphisms in mothers and the occurrence of embryonic tumors in their children.

Subjects and Methods

Allelic discrimination (TaqMAN probes)

- 47 Brazilian children with WT and their mothers;
- 49 other embryonal tumors (retinoblastoma, neuroblastoma and medulloblastoma) and their mothers;

 190 health children and 117 mothers

Subjects and Methods

- Wilms Tumor patients: age ranged from 0 125 months.
- Other embryonal tumors: age range from 0 132 months.
- Children used as controls: age range from 0 60 months.
- There was no statistical difference according to gender in tumors nor even in controls.

Results

Table II: Genotype distributions and polymorphisms susceptibility

		Wilms Tumor		Neuroectodermal Tumors	
	Genotype	Child OR (95%CI)	Mothers OR (95%CI)	Child OR (95%CI)	Mothers OR (95%CI)
PON1 Q192R	QQ	1.0	1.0	1.0	1.0
	QR	2.25 (0.98 - 5.14)	1.58 (0.68 - 3.66)	1.61 (0.78 - 3.30)	1.04 (0.49 - 2.19)
	RR	1.83 (0.71 - 4.7)	1.64 (0.56 - 4.81)	1.47 (0.64 - 3.34)	2 (0.81 - 4.92)
PON1 L55M	LL	1.0	1.0	1.0	1.0
	LM	1.72 (0.87 - 3.41)	1.45 (0.68 - 3.12)	0.91 (0.48 - 1.74)	0.69 (0.35 - 1.37)
	MM	1.12 (0.34 - 3.62)	2.28 (0.58 - 8.86)	0.33 (0.07 - 1.49)	0.43 (0.08 - 2.36)

- Mothers genotypes and children genotypes together:
- PON1 Q192R QQ/QQ; QQ/QR; QR/QQ; QR/QR; RR/QR; RR/RR
- PON L55M LL/LL; LL/LM; LM/LL; LM/MM; MM/LM; MM/MM
- We observed no significant differences but N is too small.

Final Remark

• Despite the small series of cases, our preliminary results suggest that *PON1* Q192R polymorphism may be an important risk factor in the development of WT when children are exposed to pesticides.

Acknowledgements

- Ministério da Saúde
- Support Agencies
- Pediatric Hematology-Oncology Program
- Brazilian Embryonic tumor group
- Dra. Maria do Socorro Pombo-de-Oliveira
 & Dra. Beatriz de Camargo
- Rafaela Montalvão & Bruno A. Gonçalves

