EMF and risk of tumours

Rationale for IARC 2B classification of ELF and RF

Elisabeth Cardis

UNIVERSITAT POMPEU FABRA

IARC Monographs Vol 80 - 2002

5.5 Evaluation

- There is *limited evidence* in humans for the carcinogenicity of extremely low frequency magnetic fields in relation to <u>childhood leukaemia</u>.
- There is *inadequate evidence* in humans for the carcinogenicity of extremely low frequency magnetic fields in relation to all other cancers.
- There is *inadequate evidence* in humans for the carcinogenicity of static electric or magnetic fields and extremely low-frequency electric fields.
- There is *inadequate evidence* in experimental animals for the carcinogenicity of extremely low-frequency magnetic fields.
- No data relevant to the carcinogenicity of static electric or magnetic fields and extremely low-frequency electric fields in experimental animals were available.

Overall evaluation

- Extremely low-frequency magnetic fields are possibly carcinogenic to humans (Group 2B).
- Static electric and magnetic fields and extremely low-frequency electric fields are not classifiable as to their carcinogenicity to humans (Group 3)

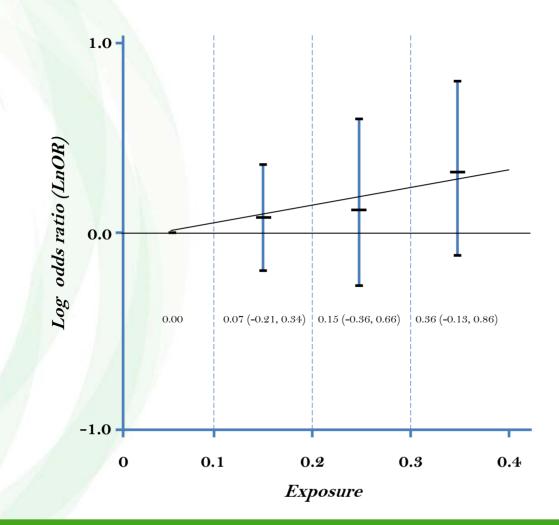
>Ahlbom et al 2000 – pooled analysis of data from 9 studies

Type of study	0.1-< 0.2 μT	0.2-< 0.4 μT	$\geq 0.4 \mu T$	0	E	Continuous analysis
Measurement studies						
Canada (McBride et al., 1999)	1.3 (0.84-2.0)	1.4 (0.78-2.5)	1.6 (0.65-3.7)	13	10.3	1.2 (0.96-1.5)
Germany (Michaelis et al., 1998)	1.2 (0.58-2.6)	1.7 (0.48-5.8)	2.0 (0.26-15)	2	0.9	1.3 (0.76-2.3)
New Zealand (Dockerty <i>et al.</i> , 1998, 1999)	0.67 (0.20-2.2)	4 cases/0 controls	0 cases/0 controls	0	0	1.4 (0.40-4.6)
United Kingdom (UKCCSI, 1999)	0.84 (0.57-1.2)	0.98 (0.50-1.9)	1.0 (0.30-3.4)	4	4.4	0.93 (0.69-1.3)
USA (Linet et al., 1997)	1.1 (0.81-1.5)	1.0 (0.65-1.6)	3.4 (1.2-9.5)	17	4.7	1.3 (1.0-1.7)
Calculated field studies						
Denmark (Olsen et al., 1993)	2.7 (0.24-31)	0 cases/8 controls	2 cases/0 controls	2	0	1.5 (0.85-2.7)
Finland (Verkasalo et al., 1993)	0 cases/19 controls	4.1 (0.48-35)	6.2 (0.68-57)	1	0.2	1.2 (0.79-1.7)
Norway (Tynes & Haldorsen, 1997)	1.8 (0.65-4.7)	1.1 (0.21-5.2)	0 cases/10 controls	0	2.7	0.78 (0.50-1.2)
Sweden (Feychting & Ahlbom, 1993)	1.8 (0.48-6.4)	0.57 <mark>(</mark> 0.07–4.7)	3.7 (1.2–11.4)	5	1.5	1.3 (0.98–1.7)
Summary						
Measurement studies	1.1 (0.86-1.3)	1.2 (0.85-1.5)	1.9 (1.1-3.2)	36	20.1	1.2 (1.0-1.3)
Calculated field studies	1.6 (0.77-3.3)	0.79 (0.27-2.3)	2.1 (0.93-4.9)	8	4.4	1.1 (0.94-1.3)
All studies	1.1 (0.89-1.3)	1.1 (0.84-1.5)	2.0 (1.3-3.1)	44	24.2	1.2 (1.0-1.3)

➢ Greenland et al 2000 - pooled estimates from 12 studies:
○ Pr 1 7 (1.2 - 2.2) above 0.2 - T

OR: 1.7 (1.2 – 2.3) above 0.3 μT

What is new since IARC Monographs Vol 80 ?


• Recent pooled analysis on newer* studies - Kheifets et al (2010)

Germany, 2 Italian studies, Japan, Tasmania, UK

Exposure category (µT)	Number of cases	Number of controls	N	OR (adjusted for age, sex and SES) with 95% CI
<0.1	10,691	12,501	23,192	1.00
0.1-0.2	79	202	281	1.07 (0.81, 1.41)
0.2-0.3	22	53	75	1.16 (0.69, 1.93)
≥0.3	26	50	76	1.44 (0.88, 2.36)

≥0.4 µT : OR 2.02 (0.9–4.7) vs. 2.00 (1.3-3.1) in Ahlbom et al 2000

Continuous exposure-response coefficient derived from summary data

Generalised least squares

regression, constrained to origin

Current evidence for ELF and childhood leukaemia

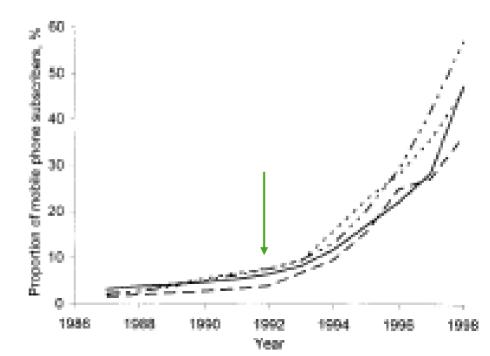
- Kheifets et al (2010)
 - We conclude that recent studies on magnetic fields and childhood leukaemia do not alter the previous assessment that magnetic fields are possibly carcinogenic

• EFHRAN review (2011)

- There is limited evidence for an association between magnetic fields and the risk of leukaemia in children.
- This evaluation reflects the current state of knowledge: epidemiological studies have shown an association between residential exposures to power frequency magnetic fields at above approximately 0.3/0.4 μT and a two-fold risk of childhood leukaemia with some degree of consistency, but observed association alone not sufficient to conclude a causal relationship.
 - i) no known mechanistic explanation and none of the hypotheses put forward to explain it has received any convincing support from data;
 - ✓ *ii)* overall, experimental studies do not provide evidence that LF magnetic fields are carcinogenic;
 - ✓ iii) a combination of chance, bias and confounding may well have produced a spurious association
- It is unlikely that further epidemiological studies of the same design as used earlier will provide any new insight.
 - New concepts to identify cohorts of children with higher exposures may turn out to be promising. If the hypothesis of a poorer survival of children with leukaemia will be confirmed by other studies, this will increase the biological plausibility of a causal association.
 - ✓ Further methodological work investigating the impact of possible biases in studies.
- EFHRAN health impact assessment (underway)
 - 1-2% childhood leukaemia cases in Europe may be due to ELF if ELF is carcinogenic

Mobile phones, RF and health

- History of mobile phone use
 - 1st generation analogue phones
 - ✓ started in early 1980's
 - "bag telephones" with antenna on the bag
 - -car phones
 - -mainly 450 MHz range
 - -costs were high and phones unwieldy
 - ✓ late 1980's early 1990s ...
 - "Smaller" hand held phones with antennas
 - -800-900 MHz
 - -still expensive ... "businessmen"



Mobile phones, RF and health

2nd generation - digital phones

- started around 1992
- 800-900 MHz
- then 1500, 1800-1900 MHz
- prices decreased
- subscription prevalence increased
- ,,, but use still low ...
 - ✓ 100 hours lifetime,
 - ✓ 2-2.5 hours monthly in Interphone controls (interviewed 2000-2004)

Frouge 1 – Annual proportion of mobile phone subscribers in four Nortic populations during 1987-98. Denmark is indicated as— —, Fieland as— —, Norway as —— and Sweden as — –,

Lönn et al, 2004

Mobile phones, RF and health

- Today ...
 - >4.6 billion users in the world
 - Increasingly 3G, 3.5G, 4G
 - Higher frequencies ... 2.2 GHz though now re-using lower frequencies
 - Prevalence of use still increasing, particularly in young people
 - So is amount of use ...
 - ... not unusual to see young people using phones 1 or more hour a day

What do we know about health effects of RF?

- Have been reviewed over the years by a number of national and international committees
 - Most reviews have been inconclusive some suggesting lack of effects at athermal levels
- WHO-IARC Monographs evaluation 31 May 2011
 - based on a critical review of all available peer-reviewed studies, classified RF as "possibly carcinogenic to humans – 2B" *

* Baan et al, The Lancet Oncology – epub 22 June 2011

IARC RF evaluation

- Possibly carcinogenic to humans 2B
 - Limited evidence of carcinogenicity in human
 - Main basis are results of Hardell and INTERPHONE studies which show indications of a possible increased risk of glioma and acoustic neurinoma in longer term and/or heaviest users
 - ✓ Interpretation is credible
 - ✓ Bias and/or counfounding cannot however be ruled out

A few members of the Working Group considered the current evidence in humans "inadequate". In their opinion there was inconsistency between the two case-control studies and a lack of an exposure-response relationship in the INTERPHONE study results; no increase in rates of glioma or acoustic neuroma was seen in the Danish cohort study, and up to now, reported time trends in incidence rates of glioma have not shown a parallel to temporal trends in mobile phone use.

IARC RF evaluation

- Limited evidence of carcinogencity in animals
 - ✓ None of the chronic bioassays showed an increased incidence of any tumour type in tissues or organs of animals exposed to RF-EMF for 2 years though an increased total number of malignant tumours was found in RF-EMF-exposed animals in one
 - ✓ Increased cancer incidence in exposed animals in a small number of studies with tumour-prone animals and in one of 18 studies using initiation-promotion protocols.
 - ✓ Four of six co-carcinogenesis studies showed increased cancer incidence after exposure to RF-EMF in combination with a known carcinogen
- Weak mechanistic evidence relevant to RF induced cancer in humans

Epidemiology - different approaches

- Ecologic studies
- Cohort studies
- Case-control studies

.. Each has specific purposes, advantages and limitations

Different epidemiological approaches

"Ecologic" studies

correlation between mortality or incidence rates in a population and a measure of exposure at the level of the population

(e.g. mobile phone subscription rates)...

- ✓ Geographical correlations
- ✓ Temporal correlations time trends
- Helpful surveillance tool
- But interpretation can be difficult e.g. for mobile phones
 - most analyses examined trends until the early 2000s only and hence provide little information
 - if excess risk only manifests more than a decade after phone use begins,
 - and/or if phone use only affects a small proportion of cases—eg, the most heavily exposed, or a subset of brain tumours.

Different epidemiological approaches

"Analytical studies"

.... Information available at individual level Much more informative for risk evaluation

Cohort studies

Study group defined by its exposure and followed up in time to determine disease status

✓ Very useful for surveillance – follow multiple endpoints

✓ Little power for rare outcomes ... e.g. Danish cohort study

- 400 000 subscribers approximately
- 3.8 million person years of follow-up
- 356 glioma cases
- Exposure assessment difficult for large cohorts
 - Substantial exposure misclassification in Danish cohort
- Potential for selection bias if comparisons with general population
- ✓ Need many years of follow-up for diseases such as cancer

Different epidemiological approaches

- "Analytical studies" (con'td)
 - Case-control studies
 - Study group defined by disease status compare level of exposure between cases and controls
 - ✓ Much greater statistical power for rare outcomes:
 - select all cases from very large geographical areas
 e.g Interphone: 2 708 glioma cases
 - ✓ Can collect detailed information for exposure estimation
 - numbers of subjects limited (thousands vs hundreds of thousands or millions)
 - ✓ No need for very long-term follow-up
 - Collect cases over a few years
 - ✓ But by design focus on only a few outcomes
 - No information about Alzheimer's in brain tumour study ...
 - ✓ Potential for recall bias and error
 - \checkmark Potential for selection bias (if poor response rates)

				Long term users		
Reference	Study period	Total number of	% users	Duration of use	Number of cases	RR (95% CI)
		cases				
Muscat, 2000	94-98	469	18%	<u>></u> 4 years	17	0.7 (0.4-1.4)
Inskip, 2001	94-98	782	18%	<u>></u> 5 years	22	0.9 (0.5-1.6)
Auvinen, 2002	96	398	13%	>2 years	18	1.5 (0.9-2.5)

... few exposed cases, short follow-up ...

Swedish case-control study - glioma

- Pooled analysis of two studies (Hardell et al, 2011)
 - 1148 glioma and 2438 controls
 - Cases ascertained 1997–2003 through cancer registries
 - Self-administered questionnaires followed by telephone interviews
 - Response rates high (84-85%)
- ORs for glioma

 Use 1+ years 	1.3 (95% CI 1.1-1.6)	529 cases
 Use 10+ years 	2.5 (95% CI 1.8-3.3)	123 cases
 >2000 hours 	3.2 (95% CI 2.0-5.1)	58 cases

- OR increased with time since first use and with total call time
- Ipsilateral use of the mobile phone was associated with higher risk
- Risk highest for use before age 20
- Similar findings for use of cordless phones

The INTERPHONE study

- Objectives
 - To determine whether mobile phone use increases the risk of cancer, and
 - To examine the association with other known / suspected risk factors
- Design
 - Population based case-control studies:
 - ✓ Glioma
 - ✓ Meningioma
 - ✓ Acoustic neurinoma
 - ✓ Parotid gland tumours
 - All persons aged 30-59 years who reside in the study regions (metropolitan areas in most countries)
 - Case diagnoses: 2000 until late 2004

INTERPHONE - study results

- Meningioma:
- Glioma:
- Acoustic neuroma (AN):

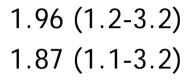
2409 cases and 2662 controls

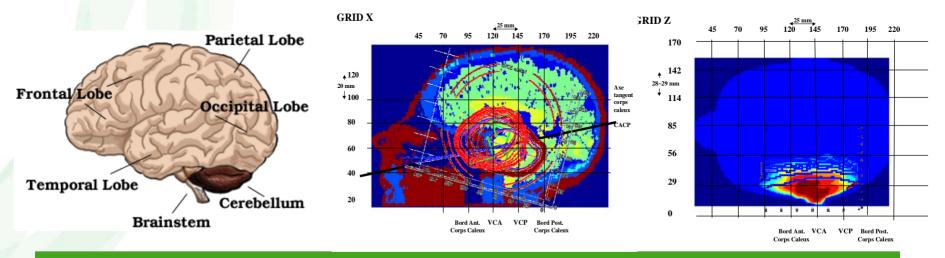
- 2708 cases and 2972 controls
- 1105 cases and 2145 controls

0.79 (95% CI 0.68-0.91)

0.83 (95% CI 0.61-1.14)

- Reduced OR among ever regular users
 - Meningioma:
 - Glioma:
 - 0.81 (95% CI 0.70-0.94) 0.85 (95% CI 0.69-1.04) • AN:
- No increased risk for use 10+ years
 - Meningioma:
 - Glioma: 0.98 (95% CI 0.76-1.26)
 - 0.76 (95% CI 0.52-1.11) • AN:


Overwhelming majority of ORs below 1 ... risks underestimated ?


The INTERPHONE Study Group. Brain tumour risk in relation to mobile telephone use: results of the INTERPHONE international case-control study. IJE 2010

The INTERPHONE Study Group. Acoustic neuroma risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. Cancer Epidemiol, 2011

INTERPHONE - study results

- No evidence of exposure response relationship but ...
- Increased OR in highest users (>= 1640h)
 - Glioma: 1.40 (95% CI 1.03-1.89)
 - Risk highest
 - ✓ On side of head where phone is used
 - ✓ For tumours in the temporal lobe

INTERPHONE study results

- Recent 5-country analyses with estimated RF dose at the location of the tumour (Cardis et al, OEM, 2011)
 - a dose-response relationship for glioma 7+ years before dx
 - no association in short-term users
 - a higher proportion of long term users in tumours in most exposed area of the brain

... Results suggestive, but biases and error prevent a causal

• Caution needed until more definitive conclusions can be drawn

CHANGES IN PATTERN OF USE

Interphone study subjects

- Light users compared to today
 - ✓ Few used the phone more than 10 years
 - ✓ Median cumulative call time over life: 100 hours
 - ✓ Highest group >=1640 hours: *about 30 min/day over 10 years*
- Not unusual today for people to speak one hour or more, particularly young people

>Need more research, particularly among young people

Mobile phones and brain tumours in young people

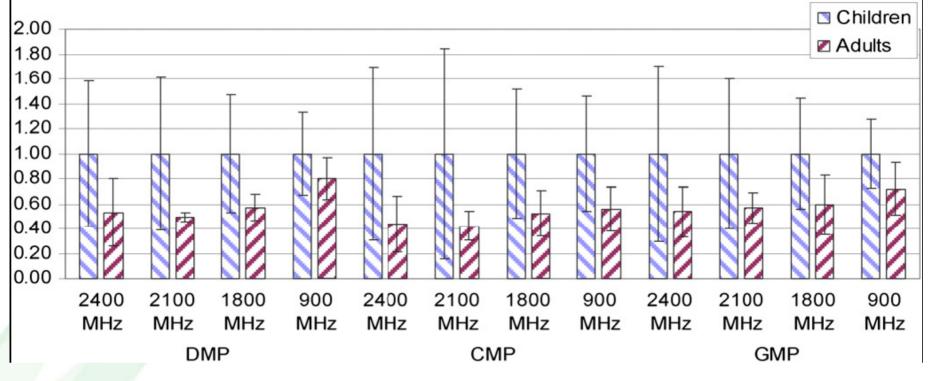
- Public and public health interest
 - International recommendations

 ✓ WHO International EMF Project
 ✓ EU supported EMF-Net
 - National recommendations

Use of mobile phones during childhood and adolescence

• Benefits – non-negligible

- Emergencies
- Communication with family
- Communication with friends
- What are the potential risks ?
 - Cognitive effects
 - Brain and CNS tumours
- Health effects of RF not demonstrated at this point


... but if there is a risk, it is likely to be greater for exposures in childhood and adolescence ...

Why would the risk be larger?

- Children who start using phones will have much more exposure
 - Many more years of use
 - Greater quantity of use as much cheaper than before
- Children may be more vulnerable

Exposure is greater ...

The relative mean MSAR1g tends to be higher in children than in adult brain tissues (results normalized to children)

Wiart et al, 2008

www.creal.cat

Brain tumours in young people - CEFALO

Aydin et al 2011, JNCI

- 352 cases, 646 controls
- 7-19 years old, 2004-2008
- Participation rates 83% cases, 71% controls
- Results
 - ✓ Ever regular use (194 cases) OR 1.36 (95% CI 0.92-2.02)
 - ✓ No evidence of increase with duration or amount of use
 - ...only 52 cases with subscriptions for 4 years or more
- Interpretation difficult
 - Relatively small number of subjects
 - ✓ Subjects young median 13 years
 - ✓ Very few long term or heavy users
 - median years of use 2.7
 - median cumluative hours of use lifetime: 35
 - ✓ Most ORs above 1 …

Mobi-Kids

- Overall objective
 - To assess the risk of brain tumours in young people in relation to:
 - childhood and adolescent exposure to EMF from communication technologies
 - ✓ other potential environmental and host factors
- Case-control study
 - Cases
 - Benign and malignant brain tumours
 - ✓ Aged 10-24, 2010-2013
 - Rapid ascertainment from diagnosing and treatment hospitals
 - Controls
 - ✓ 2 per case
 - Appendicitis controls, to minimise selection bias related to nonparticipation.
 - ✓ Individually matched on age, sex and region

MobiKids countries – about 2000 cases expected

- EU funding
 - Austria
 - France
 - Germany
 - Greece
 - Israel
 - Italy
 - The Netherlands
 - Spain*

*CREAL coordinator

- Separate funding
 - Australia
 - New Zealand
 - Canada
 - India
 - Korea
 - Japan
 - Taiwan
 - US ?

Detailed study questionnaire

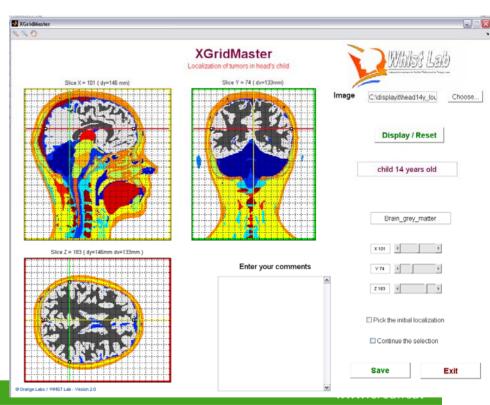
MobiKids - [B. Uso de Teléfono Móbil]					
📷 MobiKids Archivo Edición Vista Ayuda					
mobi-kids Under Dieserwarden Technick Thereward and Bine Networks I Warg Rept Interview Status Summary					
FPrimary 11-01-15-01-0001 Exit					
Was the Informed Consent signed? O0 : No ●1 : Si					
Link Status * Section	Index Name: hjh hjh				
> On-going Follow-Up Registry	Link Status * Section				
Completed Appendix A	Pending Appendix B				
Main Questionnaire Status: 2 : To Continue	Parental Questionnaire Status:				
Last Section: B_MobilePhone_Use 2	Last Section:				
Last Field: B1_MPU	Last Field:				
Status * Main Questionnaire Section	Status * Parental Questionnaire Section				
Completed A. General Information	> Pending I. Maternal Questionnaire				
> On-going B. Mobile Phone Use	Pending Mother Questions On Water And Disinfection By-Products (country specific)				
> Pending C. Other wireless communication devices usage	Pending J. Family History of Cancer				
Pending D. Exposure to other (not communication) sources of ELF and RI	Pending K. Paternal Questionnaire				
> Pending E. Occupational	Pending L. Interview responsiveness (Parental)				
Pending F. Medical Radiation					
Pending G. Medical History	Link Status * Section				
Pending Index Questions On Water And Disinfection By-Products (country specific)	> Pending M. Clinical Questionnaire				
Pending H. Interview responsiveness & status					

) a 🔽

Validation of self-reported mobile phone use

- Historical traffic/billing records from providers for <u>cases and controls</u>
 - Frequency and duration of voice and data use
 - Identification of phones (in some countries through IMEI)
- Laterality
 - Interview hands a phone to the subject
 - Photograph if not in person
- Software-modified-smartphones (SMSP) study among volunteers
 - Frequency and duration of voice and data use
 - Laterality
 - Hands free
 - Estimated power
 - ... Validation and information on use patterns

www.creal.cat


ZonWN

Tumour diagnosis and localisation

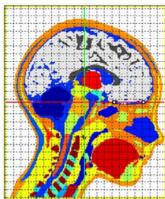
• Tumour diagnosis:

central review of sample of histological slides by international panel of neuropathologists to verify diagnosis

• Tumour localisation: review of MRI/CT scans - mark precise location of tumour on specially developed grids

Exposure assessment

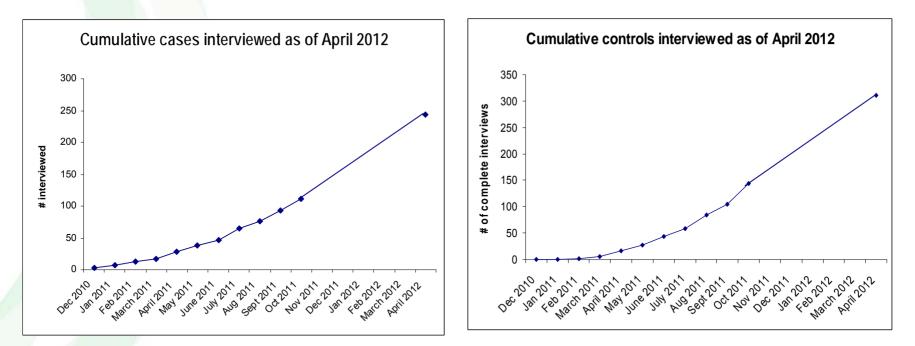
 Exposure assessment subcommittee: Myron Maslany, Joe Wiart, Hans Kromhout, Malcolm Sim, Ae-Kyoung Lee, Masao Taki, Elisabeth Cardis


• Exposure assessment - EMF

- Estimation of RF and ELF exposure at different locations of the brain from mobile and DECT phones and other communications technologies
- Estimation of EMF exposure from other residential and occupational sources

Objective: characterise the exposure

Tumor localisation



SAR distribution in brain :

highly localized

Current status

- Ethics approvals:
 - Obtained or ongoing in most countries (hundreds of hospitals !)
- First interviews started early 2011
- New countries about to start

Data collection until Sept 2014 - results 2015/2016

What should we do in the mean time?

There are easy ways to reduce one's exposure

- Keeping phone away from the head
 - ✓ SMS
 - ✓ Hands-free kits
 - ✓ Speaker of the phone

... Reasonable to use them until more conclusive evidence

Centre de Recerca en Epidemiologia Ambiental

.UNIVERSITAT POMPEU FABRA

Parc de Recerca

Tel. (+34) 93 214 73 00 Fax (+34) 93 214 73 02

info@creal.cat www.creal.cat

