Radiation genetics, epigenetics and effects on clock genes

Yuri E Dubrova

yed2@le.ac.uk

Department of Genetics University of Leicester, UK

Everything happens in the directly irradiated cell & mutation induction occurs at the radiation-damaged sites (targets)
 The yield of mutations is proportional to the amount of initial DNA damage & efficiency of its repair, *i.e.* depends on the dose, dose-rate & type of irradiation
 The risk of exposure to ionising radiation is described by the Linear No-Threshold Model

Radiation-induced genomic instability in somatic cells

What about the germline?

utation

equency

Mouse Expanded Simple Tandem Repeat (ESTR) loci

4-10 bp repeats, 100 bp - 20 kb arrays, non-coding
Very spontaneous mutation rate (up to 15% per gamete)
Mutations result in the loss/gain of repeats

ESTR mutation detection in the germline & somatic tissues

Pedigree approach

Single-molecule PCR approach

Let's go transgenerational...

Transgenerational germline instability in the F₁ offspring of CBA/H male mice exposed to 0.5 Gy of fission neutrons

Is transgenerational instability strain-specific?

Transgenerational instability in three inbred mouse strains

Is transgenerational instability tissue-specific?

Transgenerational instability in the germline & somatic tissues

From: Barber et al., 2006, Oncogene 25, 7336-42; 2009, Mutat Res 664, 6-12

Is transgenerational instability specific for tandem repeat loci?

Transgenerational instability at the mouse *hprt* locus

Chromosome aberrations in the F₁ **offspring of irradiated rats**

For how long can a transgenerational signal survive in the irradiated males?

Instability?

Can paternal exposure to chemical mutagens destabilise the F₁ genomes?

Alkylating agent ethynitoesurea, ENU
≻mostly base damage
≻results in base substitutions
≻~ no ENU-induced DSBs

Anticancer drug cyclophosphamide, CPP
> alkylated monoadducts & crosslinks
> results in base substitutions
> crosslinks can result in DSBs after replication/repair

H₂N

H₂N

Anticancer drug procarbazine, PCH
≻alkylated monoadducts
≻ free radical species
> base substitutions & SSBs

ESTR instability in the F₁ offspring of mutagen-treated male mice

Is transgenerational instability sex-specific?

The offspring of irradiated females are stable

Mechanisms

Some back of the envelope exercises...

chat

>~ 1,000 genes are involved in maintain in mammals (DNA repair, apoptosi

0

enome stability e arrest etc)

> max spontaneous mutation r

- exposure to 1 Gy of X-r mutation rate
- if ANY radiation is DOMINA the genome s 1000 x 3 x 10⁻⁶

fold increase in

at ANY of 1,000 genes ally compromise

F₁ offspring should be unstable

according to our data ~100% of the F₁ offspring of of irradiated males are unstable

Initiation of an epigenetic instability signal in the directly exposed male germ cells

Transmission of an epigenetic instability signal to the offspring & its manifestation

Measuring DNA damage in vivo

The alkaline Comet assay

The *yH2AX* assay

Mostly single-strand DNA breaks + some DNA adducts

Double-strand DNA breaks only

Endogenous DNA damage in controls & the F₁ offspring of irradiated males

Single-strand DNA breaks Comet assay, bone marrow

Double-strand DNA breaks γ-H2AX assay, spleen

DNA repair in the F₁ offspring of irradiated males

Oxidative DNA damage in the F₁ offspring (FPG Comet)

The efficiency of DNA in the F₁ offspring is OK \succ No sign of oxidative stress in the F₁ offspring > What else?

From: Barber et al., 2006, Oncogene 25, 7336-42

Oxidative stress

DNA damage:

Hallmark:

> modified bases

Accumulation of

oxidatively damaged

nucleotides in DNA

Probabilities for the effects of paternal irradiation on F₁ gene expression

Compromised gene expression in the F₁ offspring

Circadian trascriptome & circadian metabolism in mice

Circadian transcripts in mouse liver

2 6 10 14 18 22 26 Circadian Time (hours)

From: Maywood *et al.*, 2007, *Cold Spring Harb Symp Quant Biol* **72**, 85 Akhtar *et al.*, 2002, *Curr Biol* **12**, 540

And so what?

Incidence of skin tumour in the offspring of irradiated male mice

Transgenerational effects in the children of irradiated parents

Childhood cancer survivors

From mice to humans....

Experiment one: Male mice exposed to 10 – 100 cGy acute γ-rays or 100 cGy chronic γ-rays

Experiment two: Male mice exposed to clinically-relevant doses of 3 anticancer drugs: Cyclophosphamide Mitomycin C Procarbazine

Conclusions

- High-dose acute paternal exposure to a number of mutagens can significantly destabilise the genomes of their offspring
 Transgenerational instability is a genome-wide phenomenon which affects the frequency of chromosome aberrations and gene mutations
- Transgenerational instability is triggered in the directly exposed germ cells by a stress-like response to a generalised DNA damage
- Transgenerational instability is attributed to the presence of a persistent subset of endogenous DNA lesions
- Transgenerational instability is attributed to the epigenetic changes affecting the expression of a subset of genes, involved in rhythmic process & regulation of transcription
- Transgenerational instability may represent an important component of the long-term genetic risk of human exposure to mutagens, but we need HUMAN data to prove it!

Acknowledgements

Dubrova's lab			
Ruth Barber	Colin Glen	Safeer Mughal	Andre Gomes
Robert Hardwick	Carole Yauk	Mariel Voutounou	Tim Hatch
Dominic Kelly	Peter Hickenbotham	Morag Shanks	Carles Vilarino-Guell
Karen Monger	Bruno Gutierrez	Karen Burr	Julia Brown
Natalya Topchiy	Isabelle Roux	Peter Black	Demetria Pavlou
Hamdy Ali Abouzeid			
MRC Radiation and Genome Stability Unit, Harwell, UK			
Mark Plumb Emma Bo	ulton Jan Fennel	ly Dudley G	oodhead
Department of Cancer Studies and Molecular Medicine, University of Leicester, UK			
George "Don" Jones	Gabriela Almeida		<u>Comet Assay</u>
> NI Vavilov Institute of Gener	ral Genetics, Moscow,	Russia	Chronic irradiation
Alexander Rubanovich	Andrey Myazin		
Medical Radiological Resear	ch Centre, Obninsk, R	lussia	Chronic irradiation
Leonid Zhavoronkov	Yuri Semin	Albert Br	ovin
Valentina Glushakova Valentina Posadskaya Olga Izn		et'eva	
MRC Toxicology Unit, Leice	ster, UK		Anticancer drugs
Andy Smith			
Centre for Molecular Genetics and Toxicology, University of Wales, Swansea, UK			
George Johnson	James Parry		<u>Hprt assay</u>
Catholic University of Nijmegen, The Netherlands			
Peter de Boer Alwin Der	rijck Godfried v	an der Heijden	<u>Sperm irradiation</u>
Gray Cancer Institute, Northwood, UK			<u> yH2AX assay</u>
Kai Rothkamm			
CANCER RESEARCH UK The Wellcome Trust	The EMF I Research T	Biological Science of Science	

