INCREASING INCIDENCE AND GEOGRAPHICAL ANALYSES OF THYROID CANCER IN GREAT BRITAIN, 1976 - 2005

Dr Richard J.Q. McNally, Reader in Epidemiology, Institute of Health and Society, Newcastle University

Richard.McNally@ncl.ac.uk

INTRODUCTION (1)

 Exact aetiology of thyroid cancer not known

• Exposure to ionizing radiation in early life is a risk factor in children & young people

• Can be a risk even at low levels

INTRODUCTION (2)

 The nuclear accident in Chernobyl on 26th April 1986 released a radioactive cloud

 Reached northern England on 2nd May 1986

 Increases in incidence (after accident) reported in other parts of Europe & USA

INTRODUCTION (3)

 Statistically significant increase in incidence in 0 – 24 year olds from northern England during post-Chernobyl period (1987 – 2005) previously found

Increase was notably high in Cumbria

INTRODUCTION (4)

OBJECTIVES (1)

 To examine temporal trends & geographical variation in the incidence of primary thyroid cancers using an extended age-range & geographical area of Great Britain, diagnosed 1976–2005

- 0–49 year olds
- Northern England + Scotland + Wales

AIMS

• (1) To analyse age, period & cohort effects

 (2) To compare incidence between the pre- & post-Chernobyl periods (1976–1986 & 1987–2005)

 (3) To analyse putative associations with area-based measures of deprivation & population density

METHODS (1)

 Cases eligible for this study were all those diagnosed with primary differentiated (papillary or follicular) thyroid carcinoma

 Case data were obtained from four population-based regional registries in GB: Northern & Yorkshire, North West, Wales & Scotland

METHODS (2)

 Cases were allocated to census small areas, allowing linkage to population data from the 1981, 1991 & 2001 censuses

 Age-standardised rates (ASRs) & 95% confidence intervals (CIs) were calculated

METHODS (3)

 An adaptation of the Clayton-Schifflers method was used to analyse age-periodcohort effects. Negative binomial regression was used as data were sparse

 The following effects were analysed: age, sex, drift (linear trend), non-linear period & non-linear cohort

METHODS (4)

• Relative risks (RRs) & 95% CIs were calculated for each geographical area

 Negative binomial regression was used to examine the effects of area-based measures of deprivation & population density

RESULTS (1)

4327 cases analysed

 Males: ASR = 3.9 per million persons per year (95% CI 3.6–4.1)

 Females: ASR = 12.5 per million persons per year (95% CI 12.0–12.9)

RESULTS (2)

 For temporal trends the best fitting negative binomial regression model included: age (P<0.001), sex (P<0.001) & drift (linear trend, P<0.001)

 Non-linear period (P=0.42) & non-linear cohort (P=0.71) were NOT statistically significant

RESULTS (3)

• The most marked statistically significant increases were seen in the areas of:

- North Yorkshire (RR=2.55; 95% CI 1.49– 4.36)
- Hartlepool (RR=5.53; 95% CI 1.28–23.98)
- North East Lincolnshire (RR=2.55; 95% Cl 1.05–6.19)

RESULTS (4)

- North Lincolnshire (RR=3.46; 95% CI 1.02 –11.77)
- York (RR=4.28; 95% CI 1.29–14.15)
- Cumbria (RR=2.89; 95% CI 1.47–5.67)
- Caerphilly (RR=2.67; 95% CI 1.00-7.14)
- Rhondda (RR=14.41; 95% CI 1.96– 106.07)

RESULTS (5)

- The Scottish Borders (RR=3.64; 95% CI 1.42–9.33)
- North Ayrshire (RR=2.76; 95% CI 1.06– 7.21)
- North Lanarkshire (RR=2.82; 95% CI 1.51–5.28)

RESULTS (6)

• There were statistically significant associations with:

 Population density (RR for an increase of one person per hectare=1.016; P<0.001)

 Deprivation (RR for an increase of one unit in the deprivation score=1.071; P<0.001)

CONCLUSIONS (1)

 There has been a linear increase in the incidence of thyroid cancer which has led to a doubling of the number of cases diagnosed over a twenty year span

 The reasons for this increase are not well understood, but it is consistent with findings from other countries

CONCLUSIONS (2)

 Higher incidence of thyroid cancer was observed in a number of different geographical regions

 Higher rates were also associated with urban living and greater deprivation, indicating that other environmental or lifestyle factors may play a role in aetiology

FURTHER WORK

 Investigate the relationship between incidence of thyroid cancer and areabased level of caesium-137 deposition as measured in 1986

ACKNOWDGEMENTS

Registered Charity No. 510339

 Financial support from the JGW Patterson Foundation & the North of England Children's Cancer Research Fund is gratefully acknowledged